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Abstract: We implement and test transfer learning-based gain models across 16 ROADM
EDFAs, which achieve less than 0.17/0.30 dB mean absolute error for booster/pre-amplifier
gain prediction using only 0.5% of the full target EDFA dataset. © 2022 The Author(s)

1. Introduction
The high bandwidth and low latency requirements of next-generation wireless (e.g., 5G/6G) and wide-area (e.g.,
data center interconnect, DCI) networks rely on optical infrastructure employing wavelength-division multiplexing
(WDM) technologies that are deployed at different scales in metro, regional, and long-haul networks. A key component
to compensate optical link loss is the erbium-doped fiber amplifier (EDFA), whose output spectrum depends on its
wavelength dependent gain profile and can impact end-to-end system performance such as the link optical signal-to-
noise ratio (OSNR) and quality of transmission (QoT). However, it is challenging to estimate the wavelength dependent
gain spectrum of an EDFA as it depends on many factors such as the input power and gain setting, optical channel
loading configurations, and internal component parameters.

Recent work has focused on leveraging machine learning (ML) techniques such as deep neural networks (DNNs) to
build EDFA gain models [1], and on the generalization of the ML-based EDFA models to multiple EDFAs of the same
make by training datasets collected from all devices [2]. Although the DNN-based EDFA gain model can achieve high
gain spectrum prediction accuracy, it requires the collection of comprehensive EDFA gain spectrum measurements for
each EDFA, for example, collecting a full set of gain spectrum measurements from a single EDFA covering different
gain settings and diverse channel loading configurations can take up to 51 hours [3]. A promising solution to overcome
this challenge is transfer learning (TL) [4], which allows for building a new target ML model based on a pre-trained
source model that shares similar model knowledge using very few data samples collected from the target domain.

In this paper, we investigate TL-based EDFA gain models, and show that using only 0.5% of the new data collected
from the target EDFA (13 measurements), the transferred target model can achieve similar gain prediction accuracy
compared to the source model with the full training set (2,678 measurements). We demonstrate three different scenarios
that can benefit from TL with largely reduced EDFA data collection process: (i) TL between EDFAs of the same type
(booster or pre-amplifier); (ii) TL between different EDFA gain settings, and (iii) TL between different EDFA types.

2. EDFA Gain Spectrum Measurements Dataset
We use an open dataset [3] consisting of gain spectrum measurements collected from 16 EDFAs within 8 commercial-
grade Lumentum ROADM-20 units deployed in the PAWR COSMOS testbed [5], each with 2 EDFAs (booster/pre-
amplifier). Fig. 1 shows the dataset structure, where the gain spectrum of each booster or pre-amplifier EDFA is meas-
ured at target gain settings of 15/18/21 dB and 15/18/21/24/27 dB, respectively, in the high gain mode with 0 dB gain
tilt. For each EDFA at a given gain setting, the dataset contains a total number of 3,168 gain spectrum measurements
across 95×50 GHz channels between 191.325 THz–196.075 THz in the C-band, which are recorded in the machine
actionable json file format. The gain spectrum measurements of each EDFA are also collected under a diverse set
of Fixed and Random channel loading configurations. In particular, the Fixed category includes a set of carefully
selected fully/half loaded channels (Fixed Baseline), goalpost channels (Fixed Goalpost), and single/double (adjacent)
channels (Fixed Extra). The Random category includes a set of randomly loaded channels with small (Random Base-
line) and large (Random Extra) numbers of channel counts. The EDFA total input/output power and individual optical
channel power readings are recorded with 0.01 dB and 0.1 dB resolution, respectively.

3. DNN-based EDFA Gain Model with Transfer Learning (TL)
We construct the source DNN-based EDFA gain model for each booster and pre-amplifier with three gain settings
(15/18/21 dB) for predicting its gain spectrum. Fig. 2 shows the DNN model architecture, which consists of an input
layer, four hidden layers with 256/128/128/128 neurons, and an output layer, where the neurons are initialized by the
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Fig. 2: Architecture of the deep neural network (DNN)
model used for EDFA gain prediction and transfer learn-
ing (TL) with all fully connected layers.
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Fig. 3: MAE of EDFA gain prediction
accuracy with varying target to source
data size ratios (Ntgt/Nsrc) used for TL.

Kaiming normalization. The input features to the DNN model include the EDFA gain setting, total input/output power,
input power spectrum, and a binary vector indicating the channel loading configuration. The output layer predicts the
EDFA gain spectrum. For the input and hidden layers, we apply batch normalization and use the exponential linear unit
(ELU) activation function. The source DNN model for an EDFA is trained using the mean square error (MSE) across
all loaded channels (with a gradient clipping threshold of 3.0) as the loss function, with a learning rate of 0.001 over
600 epochs. We split the EDFA gain measurement dataset at each gain setting into training/test sets with a split ratio
of 0.85/0.15: the source model uses Nsrc = 2,678 gain measurements at each gain setting as the training set, and the
remaining 490 measurements as the test set. Specifically, the test set includes all Fixed Goalpost (270 measurements)
and 20% of the Random Baseline (220 measurements) EDFA gain spectrum measurements, which represent a diverse
set of channel loading configurations with randomly selected channels and groups of close-by channels.

To transfer a DNN-based source model to a target model, we apply the following procedure for TL. First, we freeze
the input layer and all four hidden layers of the DNN (see Fig. 2), which are treated as the feature extractor of the
DNN model, and reinitialize the weights of the output layer using Kaiming normalization. Then, the DNN model is
re-trained using the same MSE loss function with a step size of 0.05 over 150 epochs. Finally, all layers are unfrozen
and fine tuned with a step size of 0.001 over 20 epochs, while the batch normalization parameters are kept unchanged.
Based on the pre-trained source model for one EDFA (using Nsrc = 2,678 measurements), we use only Ntgt = 13 “new”
measurements collected from the target EDFA at each gain setting to construct the target model, which is then tested
using a test set with the same random and goalpost channel loading configurations as that used by the source model.

4. Results
Using the dataset and DNN-based EDFA model described above, we first investigate for a given (pre-trained) source
model, how much new data is needed from a target EDFA. We consider all cases where each booster/pre-amplifier
EDFA serves as the source model, which is then transferred to each of the 7 other booster/pre-amplifier EDFAs using
different sizes of target EDFA datasets. Fig. 3 shows the mean absolute error (MAE) and the 95th/max error of the
EDFA gain prediction accuracy averaged across all possible source-target model pairs for the random and goalpost
test sets. We consider three different numbers of gain spectrum measurements at each gain setting from the target
EDFA for TL: 5 (Ntgt/Nsrc = 0.2%, fully loaded channels), 13 (Ntgt/Nsrc = 0.5%, full/half loaded channels), and 40
(Ntgt/Nsrc = 1.5%, fully/half/single/double loaded channels). The results show that the average EDFA gain prediction
accuracy of the target model with Ntgt/Nsrc = 0.5% outperforms that achieved with a 0.2% target-source data size
ratio, but is comparable to that achieved with a 1.5% ratio. Therefore, we empirically select Ntgt = 13 in the rest of the
evaluations, which reduces the target data size by 200× while achieving an MAE of <0.2 dB across all EDFAs.

Below, we consider three TL scenarios: (i) TL between EDFAs of the same type, (ii) TL between gain settings of the
same EDFA, and (iii) TL between EDFA types. Our results show that TL is able to achieve high EDFA gain prediction
accuracy with very small target data size (Ntgt/Nsrc = 0.5%) and therefore can largely reduce the measurement time.
TL between EDFAs of the Same Type Fig. 4 shows the MAE matrices across 8 EDFAs of the same type (booster/pre-
amplifier) under the random and goalpost test sets, with three gain settings (15/18/21 dB) and a target data size of Ntgt =
13 (Ntgt/Nsrc = 0.5%). In each MAE matrix, (i) entry (i, i), i= 1, . . . ,8, corresponds to the component-level DNN-based
EDFA model without TL, and (ii) entry (i, j), j ̸= i, corresponds to the transferred EDFA model with the ith and jth

EDFA being the source and target model, respectively. It can be seen that TL achieves better average gain prediction
accuracy for booster EDFAs, and suffers from lower accuracy under goalpost channel loading configurations. Overall,
the MAE for target booster/pre-amplifier model is within 0.17/0.30 dB across the entire random and goalpost test sets.
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Fig. 4: Mean absolute error (MAE) matrix of ML-based EDFA gain prediction averaged across the random and goalpost test sets,
where entry (i, i) corresponds to the DNN-based EDFA model without transfer learning (TL), and entry (i, j), i ̸= j corresponds to
the TL-based EDFA model with the ith and jth EDFA being the source and target model, respectively.

18->15
21->15

15->18
21->18

15->21
18->21

TL w/ Different Target Gain (dB)

0.0

0.5

1.0

1.5

2.0

2.5

M
AE

 (d
B) 3.1/9.9

95th/max
3.4/16.6

0.4/2.3

3.3/19.7

0.3/1.1

2.5/32.32.7/4.4

3.1/4.5

0.4/1.0

3.2/5.3

0.4/0.8

1.8/3.7

random
goalpost

18/21->15
15/21->18

15/18->21

TL w/ Different Target Gain (dB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

M
AE

 (d
B)

0.9/2.2

0.4/1.2 0.4/0.8

95th/max
0.8/1.2

0.6/1.2

0.4/0.6

random
goalpost

Fig. 5: TL from one source gain setting (left) or two source gain settings (right) to
another target gain setting on the same booster EDFA.
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Fig. 6: TL between different EDFA
types (B: booster, P: pre-amplifier).

We expect that the performance of the target model can be further improved by including (a small number of) gain
measurements under the random/goalpost channel loading configurations in the target data.
TL between Gain Settings of the Same EDFA Fig. 5 shows the MAE and the 95th/max error of the EDFA gain
prediction accuracy of TL from one source gain setting (left) or two source gain settings (right) to another target gain
setting of the same booster EDFA, using the same random and goalpost test sets. The results show that TL using a
single source gain setting can result in an MAE of up to 0.8/1.0 dB (21 dB→15 dB) under the random/goalpost test set.
In such a case, the MAE for the random/goalpost test sets can be largely reduced to 0.26/0.32 dB with the additional
domain knowledge from a second gain setting of 18 dB (i.e., 18/21 dB→15 dB). Similar MAE performance for TL
between different gain settings are also observed on the other booster and pre-amplifier EDFAs.
TL between EDFA Types Fig. 6 shows the MAE and 95th/max error of the EDFA gain prediction accuracy when
transfer for a source booster model to target pre-amplifier model (B→P) or vice versa (P→B), compared to the DNN-
based model without TL (B→B and P→P). The MAE achieved by the target model is all within 0.2 dB, and TL
introduces an MSE degradation of only 0.07/0.05 dB and 0.09/0.05 dB for the booster/pre-amplifier EDFA compared
to that achieved by the source model under the random and goalpost test sets, respectively.

5. Conclusions
Using an open ROADM EDFA gain spectrum dataset, we investigated TL-based EDFA gain models that can achieve an
MAE of less than 0.3 dB using only 0.5% of the full dataset. We showed that the EDFA gain models can be transferred
between different EDFAs of the same type, different gain settings on the same EDFA, and different EDFA types.
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